Heterobimetallic Complexes of Palladium with Mercury, Silver, Rhodium, Iridium or Molybdenum Containing Ph₂PCH₂PPh₂ (dppm)

C. RICHARD LANGRICK, PAUL G. PRINGLE and BERNARD L. SHAW*

School of Chemistry, The University, Leeds LS2 9JT, U.K.

Received February 23, 1983

Introduction

We have described previously, simple, high yielding, routes to complexes of type trans-[Pt(C=CR)2- $(\eta^1 \text{-dppm})_2$] (dppm = Ph₂PCH₂PPh₂) (R = alkyl or aryl), such as the treatment of $[PtCl_2 (\eta^2 - dppm)]$ with LiC=CR to give $[Pt_2(C=CR)_4(\mu-dppm)_2]$ followed by the addition of dppm [1]. Subsequently these η^1 -dppm complexes were converted into heterobimetallic complexes with other metals such as Rh, Ir, Ag, Au, Cd, Hg or W [2, 3]. However, similar attempts to make palladium complexes, trans-[Pd(C= $CR_{2}(\eta^{1}-dppm_{2})$ were completely unsuccessful, dark brown decomposition products being obtained. We have now found a simple, reliable method of synthesizing palladium complexes of type trans- $[Pd(C \equiv CR)_2(\eta^1 - dppm)_2]$ which we have then used to synthesize heterobimetallic complexes, either directly, or by transmetallation.

Results and Discussion

We have reported previously that treatment of $[Pt(\eta^2 - dppm)_2]$ 2Cl with Hg(C=CR)₂ gives (1a). We now find that treatment of a CD₂Cl₂ solution of $[Pd(\eta^2 - dppm)_2] 2Cl$ {formed in situ from $[PdCl_2 (\eta^2$ -dppm)] + dppm} with Hg(C=CPh)₂ at -40 °C gives the heterobimetalic complex (1b) in ca. 100% yield [from ³¹P-{¹H} NMR evidence: $\delta_{PA} = 19.2$ ppm, $\delta P_{B} = 23.0$ ppm, ¹J(¹⁹⁹Hg-³¹P_B) = 5678 Hz, |²J(P_AP_B) + ⁴J(P_AP_{B'})| = 82 Hz]. This complex decomposes at ca. +20 °C but when prepared in acetone-ethanol (1:1) at ca. -20 °C and then treated in situ with an equivalent amount of sodium sulphide in ethanol at or below 0 °C it gave mercuric sulphide and trans-[Pd(C=CPh)₂(η^1 -dppm)₂] (2a) in 85-90% isolated yields. This stable complex, which was fully characterized, is fluxional, showing an AA'XX' ³¹P-{¹H} NMR pattern at or below -60 °C but a broad singlet at +20 °C corresponding to rapid 'end

the η^1 -dppm complex (2a) gave the palladium-silver complex (3a) in 98% isolated yield. This complex was characterized by elemental analysis (C, H, Cl) and by IR and NMR spectroscopy, e.g. the ³¹P NMR data at -40 °C in CD₂Cl₂ where $\delta P_A = 20.0$ ppm, $\delta P_B = -6.4$ ppm, ¹J(¹⁰⁷Ag-P_B) = 398 Hz, ${}^{1}J({}^{109}Ag - P_B) = 467 \text{ Hz}, |{}^{2}J(P_A P_B) + {}^{4}J(P_A P_{B'})| =$ 110 Hz; in the ¹H-{³¹P} NMR spectrum, the coupling of the CH₂ protons to silver could be seen [³J- $(AgH) \sim 2.7 Hz$ although the different values due to ¹⁰⁷Ag and ¹⁰⁹Ag were not resolved. The corresponding silver iodide complex (3b) was similarly made in 92% yield using [(Ph₃P)AgI]₄. We also find that treatment of $[Pd(C \equiv CPh)_2(\eta^1 - dppm)_2]$ (2a) with $[Rh_2Cl_2(CO)_4]$ in CH_2Cl_2 gives the orange salt $[(PhC \equiv C)_2 Pd(\mu - dppm)_2 Rh(CO)] Cl \quad (4a) \quad in \quad 85\%$ yield. This complex (4a) is a 1:1 electrolyte in nitrobenzene and was characterized by elemental analysis (C, H and Cl) and by IR and ¹H and ³¹P NMR spectroscopy. It is probable that one of the acetylide groups bridges both metals, as depicted in (4a) by analogy with the corresponding platinum complex [2]. Treatment of $[Pd(C \equiv CPh)_2(\eta^1 \cdot dppm)_2]$ (2a) with [Ir₂Cl₂(cyclo-octene)₄], followed by CO gave the corresponding iridium salt (4b) which behaved as a 1:1 electrolyte in acetone. We have also attempted to form mixed palladium-tungsten or -molybdenum complexes by treating the η^1 -dppm complex (2a) $[W(CO)_3(NCMe)_3]$ or $[Mo(CO)_3(C_7H_8)]$ with $(C_7H_8 = cyclohepta-1,3,5-triene)$. No substantial amount of the desired mixed complexes could be detected by ³¹P-{¹H} NMR spectroscopy. However, treatment of the mixed palladium-silver complex (3a) with $[Mo(CO)_3(C_7H_8)]$ in CH_2Cl_2/CD_2Cl_2 gave the deep-red palladium-molybdenum complex (5a) in 80% isolated yield. This complex (5a) was character-

^{*}Author to whom correspondence should be addressed.

ized by elemental analysis, by IR spectroscopy (its IR spectrum was almost identical to that of the platinum-molybdenum analogue) and by NMR spectroscopy, e.g. its ³¹ P-{¹H} NMR spectrum showed $\delta P_A = 16.4$ ppm, $\delta P_B = 38.7$ ppm and $|^2J_{-}(P_A P_B) + {}^4J(P_A P_{B'})| = 87$ Hz. A ${}^{31}P_{-}\{^{1}H\}$ NMR experiment showed that the conversion of (3a) to (5a), by transmetallation, following treatment of (3a) with $[Mo(CO)_3(C_7H_8)]$ was ca. 100% and no other phosphorus-containing species could be detected. Treatment of (3a) with fac-[W(CO)3- $(NCMe)_3$] in CH_2Cl_2/CD_2Cl_2 gave some of the palladium-tungsten analogue (5b) [³¹P-{¹H} NMR evidence] but the conversion was slow and pure (5b) has not yet been isolated. The palladium-rhodium complex (4a) was readily formed by transmetallation, using either the palladium-silver complex (3a) or the palladium-mercury complex (1b) (prepared in situ at -20 °C): these complexes were treated with $[Rh_2Cl_2(CO)_4]$ in CH_2Cl_2/CD_2Cl_2 , the progress of the conversion being followed by ³¹P- $\{^{1}H\}$ NMR spectroscopy.

Acknowledgements

We thank the Science and Engineering Research Council for support and Johnson Matthey Ltd. for the generous loan of platinum metal salts.

References

- 1 P. G. Pringle and B. L. Shaw, J. Chem. Soc., Chem. Commun., 581 (1982).
- 2 D. M. McEwan, P. G. Pringle and B. L. Shaw, J. Chem. Soc., Chem. Commun., 859 (1982).
- 3 W. S. McDonald, P. G. Pringle and B. L. Shaw, J. Chem. Soc., Chem. Commun., 861 (1982).